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ABSTRACT

Intensive longitudinal data has been widely used to examine reciprocal or causal relations between
variables. However, these variables may not be temporally aligned. This study examined the conse-
quences and solutions of the problem of temporal misalignment in intensive longitudinal data based
on dynamic structural equation models. First the impact of temporal misalignment on parameter esti-
mation were investigated in a simulation study, which showed that temporal misalignment led to
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incomparable cross-lagged effects between variables. Then, two solutions, model adjustment and data
interpolation, were proposed, and their performance was compared with those of the naive estimation
which blindly treating temporally misaligned data as aligned. The simulation results supported the
effectiveness of the model adjustment method over the other two methods. Finally, all three methods
were applied to two empirical data collected by daily diaries and empirical sampling method, and rec-
ommendations were made for collecting and analyzing intensive longitudinal data.

1. Introduction

Intensive longitudinal data (ILD) has been increasingly used
in social and behavioral science (Hamaker & Wichers,
2017). It is commonly collected through daily diaries
(Bolger et al, 2003), experience sampling method (ESM;
Hektner et al.,, 2007), and ecological momentary assessment
(EMA; Smyth & Stone, 2003). These methods measure peo-
ple’s feelings and performance in normal life and have been
widely used in the last decade due to their high ecological
validity and low recall bias (Trull & Ebner-Priemer, 2014).
One popular modeling approach for intensive longitudinal
data is dynamic structural equation modeling (DSEM),
which is developed based on structural equation modeling
(SEM), multilevel modeling (MLM), and time-series analysis
(Asparouhov et al., 2018; McNeish & Hamaker, 2020). It
has been used to examine the bidirectional relation between
various variables such as positive and negative affect
(Hamaker et al., 2018; Simons et al., 2021); exam-related
emotions and regulation strategies (Rottweiler & Nett,
2021); achievement goals and academic success (Neubauer
et al., 2022); nighttime sleep and sedentary behavior of tod-
dlers (Armstrong et al., 2019); and daily hassles and physical
health complaints (Tran et al., 2021).

With the widespread use of ILD, the problem of time-
interval dependency has attracted much attention (Gollob &
Reichardt, 1987; Hecht & Zitzmann, 2021; Kuiper & Ryan,
2018; McNeish & Hamaker, 2020). This problem is twofold.
First, if the time intervals between all repeated measure-
ments are equal, the estimated parameters (e.g., cross-lagged

parameters) will be a function of the time interval between
measurement occasions (Hecht & Zitzmann, 2021), suggest-
ing that the estimated effects (e.g., cross-lagged effects) are
subject to the length of time interval set in the study.
Furthermore, if the intervals are not equal, the estimated
parameters will be biased because the repeated measures
will be treated as if they are equally spaced. In the frame-
work of discrete-time modeling, the problem of unequal
time intervals can be addressed by using DSEM, as it allows
researchers to rescale measurements and automatically fill in
unobserved time points, and then apply a Kalman filter to
predict unobserved data (McNeish & Hamaker, 2020).
However, another issue related to the timing of repeated
measurements in intensive longitudinal data—the problem
of temporal misalignment—has been understudied. As
shown in Figure 1, there are two main types of temporal
misalignment in intensive longitudinal data, which are
caused by different reasons. The first type of temporal mis-
alignment (see Figure la) occurs when the two variables are
not measured at the same time, which is due to the inherent
differences in the timing of the variables (Armstrong et al.,
2019; Neubauer et al., 2021; Neubauer et al., 2022). This
situation is particularly common in studies that focus on the
relations between variables that occur at different times of
the day (e.g., day and night). For example, suppose a
researcher conducted a daily diary study to investigate the
bidirectional relation between negative affect during the day
(Y1) and sleep quality at night (Y5). Participants reported on
their negative affect during the day each evening and their
sleep quality the next morning. The temporal difference
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Figure 1. Two main types of temporal misalignment. Y; and Y, are two temporally misaligned variables. @, and ¢,, denote autoregressive parameters, and ¢,

and @,; denote cross-lagged parameters.

between negative affect and sleep quality resulted in the
temporal misalignment between these two variables.

The second type of temporal misalignment (see Figure
1b) occurs when the variables are measured at the same
time, but the time ranges of the variables do not correspond
(Blanke et al., 2022; Luo et al., 2022). The main difference
between this type and the previous one is that the variables
in this situation can occur simultaneously. The reason why
the variables are temporally misaligned is usually due to the
different time references used to measure the variables. For
example, in an ecological momentary assessment study,
researchers were interested in the bivariate relation between
eating behavior (Y;) and stress (Y,). These two variables
were measured at certain time intervals (e.g., 4h) during the
day. Participants reported the total amount of food con-
sumed since they completed the last questionnaire, and their
stress level at the time of completing the current question-
naire. The different time references (i.e., “since you com-
pleted the last questionnaire” and “at this moment”) used to
measure the two variables resulted in the temporal misalign-
ment between these two variables. In addition, it is worth
noting that although the causes of these two types of

temporal misalignment are different, their data patterns are
essentially the same.

Then what are the consequences of temporal misalign-
ment between variables? Researchers who collect intensive
longitudinal data may be interested in how changes in one
variable affect subsequent changes in another variable
(Hecht & Zitzmann, 2021; Usami et al., 2019), and this can
be explored through the cross-lagged effects estimated in
DSEM. However, inferring the cross-lagged relation between
variables can be problematic if the variables of interest are
not temporally aligned. As revealed in Figure 1, when
researchers blindly fit temporally misaligned data to a
DSEM, the time interval corresponding to the cross-lagged
effect of Y, (e.g., eating behavior in Figure 1b) on Y, (e.g.,
stress in Figure 1b) is much larger than that of Y, on Y;. In
this case, if it turns out that the predicting effect of the cur-
rent stress (ie., Y, 1) on the eating behavior during the
next period (i.e., Y 1) is much larger than that of the
eating behavior during the previous period (ie., Y; 1) on
the subsequent stress (i.e., Y, T,;), we cannot discern
whether this is due to a truly stronger cross-lagged effect of
stress on eating behavior or to the shorter time interval



corresponding to this effect. In other words, the cross-
lagged relations between temporally misaligned variables
(e.g., stress and eating behavior) are incomparable, making
it impossible to make reasonable inferences about their
reciprocal influence or causal relations. In addition, the esti-
mation of the autoregressive effects of the variables may
also be affected by the temporal misalignment between vari-
ables, because the path coefficients in DSEM were estimated
based on the covariance matrix of the variables, and biased
estimates of the cross-lagged parameters may also lead to
biased estimates of the autoregressive parameters. Therefore,
temporal misalignment between variables may have a nega-
tive impact on the estimation of both the autoregressive
effects of variables and the cross-lagged effects between
variables.

The main objective of this study is to examine the conse-
quences and solutions of the temporal misalignment
between variables in intensive longitudinal data based on
DSEM. Four studies were included in this article. In Study
1, we simulated intensive longitudinal data with different
degrees of temporal misalignment, and explored the influ-
ence of temporal misalignment on parameter estimation by
blindly treating temporally misaligned data as aligned. In
Study 2, we first proposed two possible solutions, the model
adjustment method and the data interpolation method, and
then compared the parameter estimation results of these
two solutions with those of the naive estimation (i.e., a dir-
ect estimation method that blindly treats temporally mis-
aligned data as aligned) to test the effectiveness of the
proposed solutions. In Study 3 and Study 4, we illustrated
the differences in the results and conclusions of different
methods (i.e., naive estimation, model adjustment, and data
interpolation) using two empirical data collected by daily
diaries and empirical sampling method, respectively.

2, Study 1: Consequences of Temporal
Misalignment

2.1. Methods

2.1.1. Study Design

To examine the consequences of temporal misalignment in
intensive longitudinal data, we first simulated data with two
variables (ie., Y; and Y,) that were temporally misaligned
to varying degrees. Specifically, to simulate data with T time
points per subject, we first generated data with n x T time
points per subject, where n denotes the number of degrees
of misalignment. Then, we adjusted the original data by
retaining only T time points per subject at some degree of
temporal misalignment and finally obtained n sets of
adjusted data with different degrees of temporal
misalignment.

As shown in Figure 2, we set six degrees of temporal
misalignment (i.e., 0, 1/6, 2/6, 3/6, 4/6, 5/6). In Figure 2a,
two variables are aligned in time (i.e., degree of temporal
misalignment = 0), which is the baseline condition. In
Figure 2b, two variables are moderately misaligned in time
(i.e., degree of temporal misalignment = 3/6). The autore-
gressive and cross-lagged parameters of the temporally
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misaligned data can be compared with those in the baseline
condition.

Notably, if we generated data by setting all four parame-
ters (i.e., two autoregressive parameters and two cross-
lagged parameters) to the same value (i.e., a), the expected
value of the autoregressive and cross-lagged parameters (i.e.,
®™) of the adjusted data in the baseline condition were
equal and can be calculated by the following formula (See
Online Supplementary Material A for the derivation).

oM = 2nlgn, (1)

In Study 1, we set n=6, a=0.4; therefore, the autore-
gressive and cross-lagged effects in the baseline condition
should be equal to 2° x 0.4° = 0.131.

2.1.2. Procedure

The original data of two variables were simulated based on
DSEM in Mplus 8.3 (Muthén & Muthén, 2017). Mplus syn-
tax for data simulation can be found in Appendix A. We set
sample size N =200, the number of time points per subject
nx T=6x50=300. At the within level, all autoregressive
and cross-lagged effects were set to 0.4, the variances of Y;
and Y, were set to 0.7, and the correlation between residuals
of Y, and Y, was set to 0.1. At the between level, the varian-
ces of Y; and Y, were set to 1, and the correlation between
Y, and Y, was set to 0.4. Notably, in our simulation studies,
the sample size (ie, N=200; Armstrong et al, 2019
Rottweiler & Nett, 2021) and the number of time points per
subject (i.e., T=50; Xu & Zheng, 2022) were chosen based
on common study designs for studies using DSEM. The
autoregressive and cross-lagged effects were set based on
parameter estimates commonly found in studies using
DSEM across multiple domains, including clinical (Gémez
Penedo et al, 2021; Johnson et al, 2020; Santangelo et al,
2020; Zhu et al, 2022), health (Armstrong et al, 2021;
Kramer et al,, 2022), developmental (Armstrong et al., 2019;
Borairi et al, 2023; Xu & Zheng, 2022), and educational
domains (Neubauer et al, 2022; Niepel et al, 2022;
Rottweiler & Nett, 2021). Similarly, the within-person
(residual) variances were set based on common empirical
results for bivariate DSEMs (Blanke et al., 2022; Gomez
Penedo et al, 2022; Niepel et al., 2022). The contemporan-
eous correlations between variables (i.e., correlations
between residuals) at the within-person level were set to be
similar to the strength of autoregressive and cross-lagged
effects, and at the between-person level, the two variables
were set to be moderately correlated (i.e., 0.3-0.5). The
simulation was replicated for 500 times.

Then, we retained T time points per subject to manipu-
late the degree of temporal misalignment of the two varia-
bles and obtained six sets of adjusted data. Finally, each set
of adjusted data was fitted directly to DSEM without consid-
ering temporal misalignment (i.e., naive estimation). The
model estimation process was replicated for 500 times for
each set of data using the R package MplusAutomation
(Hallquist & Wiley, 2018).

To show the influence of temporal misalignment on the
accuracy of parameter estimation, we computed the mean of
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Figure 2. Bidirectional relation between two variables, Y; and Y,, with different degrees of temporal misalignment. @1, and ¢, denote autoregressive parameters,
and @q, and @,; denote cross-lagged parameters. The gray characters and paths indicate the model of the generated data, and the black bolded characters and
paths indicate the model of the adjusted data with different degrees of temporal misalignment.

Table 1. Parameter estimation result of different degrees of temporal
misalignment.

Misalignment P11 P22 P12 P21

0 0.131 0.130 0.131 0.130
1/6 0.072 0.168 0.058 0.211
2/6 0.058 0.186 0.038 0.292
3/6 0.052 0.194 0.026 0.381
4/6 0.048 0.199 0.019 0.487
5/6 0.047 0.201 0.014 0.617

Notes: @,; and @,, denote the autoregressive effects of Y; and Y,, and ¢,
and @,; denote the cross-lagged effects between Y; and Y,.

500 parameter estimates for autoregressive and cross-lagged
parameters. In addition, we reported the statistical power of
autoregressive and cross-lagged parameters by calculating
the percentage of significant parameters over the 500
replications.

2.2. Results

2.2.1. Influences of Temporal Misalignment on the
Accuracy of Parameter Estimation

Table 1 presents the results of parameter estimation of dif-
ferent degrees of temporal misalignment. The results show
that the bias of the estimation results for all four parameters
dramatically increases with the degree of temporal misalign-
ment. Specifically, for the autoregressive parameters, the

autoregressive effect of Y, (i.e., @;;) decreases, while the
autoregressive effect of Y, (i.e., ¢,,) increases as the degree
of temporal misalignment increases. For the cross-lagged
parameters, the cross-lagged effect of Y; on Y, (ie, ¢12)
increase rapidly,

while the cross-lagged effect of Y, on Y, (ie., @)
decrease rapidly as the degree of temporal misalignment
increases. In addition, the autoregressive and cross-lagged
effects in the baseline condition are very close to 0.131,
which validates the formula we mentioned above
(e, " = 2n-1gn),

2.2.2. Influences of Temporal Misalignment on the
Statistical Power of Parameters

For the cross-lagged effect of Y; on Y, (i.e,, @;), temporal
misalignment has a negative impact on its statistical power.
As revealed in Figure 3, the cross-lagged effect of Y; on Y,
(i.e., @1p) decreases rapidly as the degree of temporal mis-
alignment increases. Notably, when the two variables are
almost moderately misaligned in time (i.e., degree of tem-
poral misalignment = 3), the statistical power of this cross-
lagged parameter will be lower than 0.80, which may largely
influence the conclusions of empirical studies. In addition,
for other parameters (i.e., @11, P22, and @,;), their statistical
power is greater than or equal to 0.998 for various degrees
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Figure 3. The statistical power of the cross-lagged effect of Y; on Y, (i.e., ¢1;)

as a function of the degree of temporal misalignment.

Figure 4. Adjusted model of the bidirectional relation between two temporally
misaligned variables, Y; and Y,, with autoregressive parameters @, and @y,
and cross-lagged parameters @, and ¢,;. The adjusted paths are bolded.

of temporal misalignment, indicating that the influence of
temporal misalignment on the statistical power of these
parameters is relatively small.

3. Study 2: Solutions to Temporal Misalignment
3.1. Two Proposed Solutions

3.1.1. Model Adjustment

One possible solution to the problem of temporal misalign-
ment is to adjust the estimated model. To estimate the
autoregressive and cross-lagged effects of two temporally
misaligned variables, we establish an adjusted model in
Figure 4. In contrast to the naive model in Figure 1, we
build paths between two variables measured at the same
time (e.g., Y1, 1.1 — Y, 1.1, rather than Y7 1, — Y, 1) to
estimate the cross-lagged effect of Y; on Y,. The reason for
this is that although Y; and Y, are measured at the same
time, the event represented by Y; occurs earlier than the
event represented by Y, in the same measurement (i.e., the
actual time points of the two variables are not aligned).
Therefore, the predictive effect of Y; on Y, in the same
measurement can reflect the cross-lagged effect of Y; on Y.
More importantly, in the adjusted model, the time interval
corresponding to the effect of Y; on Y, is much smaller
than that in the naive model, and the length of this time
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interval is closer to that corresponding to the effect of Y, on
Y,, which makes the cross-lagged effects between Y, and Y,
more comparable and the inference of causality between Y;
and Y, more reasonable.

3.1.2. Data Interpolation

Another possible solution to the problem of temporal mis-
alignment is to treat temporally misaligned data as data
with missing values, so that we can apply the methods for
handling missing data to solve the current problem.
Researchers proposed a great number of methods to deal
with missing values in time series data, including list-wise
deletion, data interpolation, multiple imputation, maximum
likelihood estimation (Ji et al., 2018; Pratama et al., 2016).
Since the data in the current problem are completely mis-
aligned, list-wise deletion is improper, otherwise all data will
be deleted. In addition, multiple imputation and maximum
likelihood estimation are not appropriate because we have
only two variables and no other covariates, and the
“missing” values in temporally misaligned data are funda-
mentally different from the missingness due to subject attri-
tion or response omission in empirical studies.

In contrast, data interpolation may be a more appropriate
approach. Data interpolation is a common method used to
deal with missingness or unequally spaced intensive longitu-
dinal data in discrete-time dynamic models (Ji et al., 2018).
In intensive longitudinal data, discrete observations reflect
continuous dynamic processes. For temporally misaligned
variables, there are actually unmeasured states of one vari-
able at time points aligned with the other variable, and data
interpolation allows interpolation of these unobserved states
based on the serial data of the variables themselves. After
interpolating the missingness due to temporal misalignment,
we are able to describe and analyze the now temporally
aligned variables on a denser time scale.

One of the simplest data interpolation methods is to sub-
stitute missing values with the mean of adjacent observa-
tions (Velicer & Colby, 2005). In addition, spline
interpolation is another commonly used method to deal
with missing values in intensive longitudinal data
(Gasimova et al., 2014; Ribeiro & Piedade, 2022). Therefore,
two typical data interpolation methods, mean interpolation
and spline interpolation, were used in this study to investi-
gate the effectiveness of the data interpolation method for
the problem of temporal misalignment.

3.2. Methods

3.2.1. Procedure

In Study 1, we found that a moderate degree of temporal
misalignment in intensive longitudinal data would lead to
highly biased estimates of autoregressive and cross-lagged
parameters, and low statistical power (ie., <0.80) of the
cross-lagged effect of Y; on Y,. More importantly, the mod-
erate degree of temporal misalignment is common in empir-
ical studies. For the first type of temporal misalignment, for
example, there is a moderate degree of misalignment
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between daytime variables (e.g., negative affect during the
day) and nighttime variables (e.g., sleep quality during the
night) because a day can be approximated as half day and
half night, with negative affect and sleep lasting throughout
the day and night, respectively. For the second type of tem-
poral misalignment, for example, there is a moderate degree
of misalignment between the accumulative variables (e.g.,
physical activity, with a time reference of “since you com-
pleted the last questionnaire”) and the momentary variables
(e.g., affect, with a time reference of “at this moment”)
because the former can be approximated as occurring at the
midpoint of the measurement interval. Therefore, a moder-
ate degree of temporal misalignment was used in Study 2 to
explore the effectiveness of two proposed solutions to the
problem of temporal misalignment.

We first simulated the data of two variables in Mplus 8.3
(Muthén & Muthén, 2017) based on DSEM. The simulation
was replicated for 500 times. Then, adjusted data with a
moderate temporal misalignment was created by retaining
half of the original observations for both variables. For the
model adjustment method, we simply made one adjustment
to the estimated model: we estimated the cross-lagged effect
of Y; on Y, by estimating the path value from Y; to the
contemporaneous Y, (e.g., Y;, 1t — Y, 71.1), rather than
from Y; to the subsequent Y, (e.g., Yy, r.; — Y3, ). For the
data interpolation method, we first interpolated temporally
misaligned variables with two typical interpolation methods:
(a) mean interpolation and (b) spline interpolation using
the R function na.spline in the zoo package (Zeileis &
Grothendieck, 2005). Then, the interpolated data was
fitted directly to DSEM without considering temporal
misalignment (i.e., naive estimation). The R package
MplusAutomation (Hallquist & Wiley, 2018) was used to
replicate the model estimation for 500 times. Mplus syntax
for the naive estimation and the model adjustment method
can be found in Appendix B. Note that the model settings
for the naive estimation method and the data interpolation
method are the same (their input data are different), so we
do not present the Mplus syntax for the data interpolation
method separately.

3.2.2. Simulation Conditions

Table 2 presented eight conditions we considered in this
simulation study. We first set a reference condition where
sample size (N) was equal to 200, the number of time points
per subject (T) was equal to 50, the autoregressive and

Table 2. Simulation conditions.

Condition N T dyp dyp 41 4y
200 50 0.3 0.3 0.3 0.3

Reference condition

Test N 100 50 03 0.3 0.3 0.3
300 50 03 0.3 0.3 0.3
Test T 200 30 03 0.3 0.3 0.3

200 50 04 02 02 04
200 50 02 04 04 02
200 50° 03 0.3 0.3 0.3

Notes: N denotes sample size; T denotes the number of time points per sub-
ject; Bold values indicate the parameters varied in each simulation condition.
*With discontinuous timescale.

1

2

3

4

5 200 100 03 03 03 03
Test parameter values 6
7
8

Test discontinuous timescale

cross-lagged effects were all equal to 0.3. Then, we varied
the sample size, the number of time points per subject, par-
ameter values, and the continuity of timescale to test the
effectiveness of proposed solutions. Other parameters for
generating data based on DSEM are set as follows. At the
within level, the variances of Y, and Y, were fixed as 0.6,
and the correlation between residuals of Y; and Y, was fixed
as 0.4. At the between level, the variances of Y, and Y, were
fixed as 1, and the correlation between Y, and Y, was fixed
as 0.5. Note that for these parameters of less interest in
applied studies, we set different values in Study 2 than in
Study 1 to present the impacts of temporal misalignment in
more cases.

For sample size, we used 100, 200, and 300 to represent
the small, medium and large samples in empirical studies
that collect intensive longitudinal data. For the number of
time points per subject, we used 30, 50, and 100 to repre-
sent time points in some typical designs in which intensive
longitudinal data are collected. For example, in a two-week
daily diary study, if one measurement is administered in the
morning and one in the evening, there will be 28 measure-
ments per subject in total. Therefore, we set the number of
time points per subject to 30 to reflect this typical design.
As another example, in a typical ten-day study using the
experience sampling method, if there are five measurements
per day, each subject will have a total of 50 observations.
However, we need to double the number of actual observa-
tions to calculate the number of time points per subject in
the simulation (i.e., T=50 x 2=100) because we need to
remove half of the observations in the generated data to
simulate the observed data with a moderate degree of tem-
poral misalignment.

For the parameter values, we set conditions 6 and 7 to
reflect a question of interest in empirical studies: who has a
greater effect between two variables on each other?
Specifically, we set the autoregressive effect of one variable
and the cross-lagged effect on that variable as large effects
(i.e., 0.4), and the autoregressive effect of and the cross-
lagged effect on the other variable as small effects (i.e., 0.2).
It is worth clarifying that condition 6 and 7 are not equiva-
lent, as Study 1 has showed that the impacts of temporal
misalignment on all four parameter estimates were different.

Finally, we set condition 8 to simulate a typical situation
when using empirical sampling methods and/or ecological
momentary assessments. Considering that in these types of
designs, data at certain time points are not measurable (e.g.,
during nighttime sleep), it is necessary to explore the per-
formance of the two proposed solutions in data with discon-
tinuous time scales.

3.2.3. Evaluations

To evaluate the performance of the two proposed solutions,
we first calculated the mean (6) of 500 parameter estimates
for autoregressive and cross-lagged parameters. To compare
the parameter estimation results of the naive estimation
with those of the model adjustment method and the data
interpolation method, we calculated the relative bias
(¢ —D)/D, where ® is the expected values of four



parameters. Note that the expected values of four parame-
ters varied in different methods. In the data interpolation
method, the expected values of all parameters are equal to
the corresponding simulated parameters; however, in the
other two methods, the expected values of four parameters
should be calculated as follows.

In the naive estimation method, researchers would
blindly treat the temporally misaligned data as aligned and
expect to obtain the parameter values at corresponding time
intervals. In conditions 1 through 5 and condition 8, all
four parameters (i.e., a) are set to 0.3 to generate data, so
the expected values of the parameters should satisfy the
equations introduced in Study 1 (ie., ®" = 2"1g") and
equal to 0.18 as the number of degrees of temporal mis-
alignment (i.e., n) is equal to 2 in study 2. In conditions 6
and 7, the parameters in the generated data are not all
equal. In these conditions, the expected values of the autore-
gressive and cross-lagged parameters for Y; and Y, can be

calculated by the following equations (see Online
Supplementary Material A for the derivation):
o} = @) = ay(a + )" (2a)
Oy = ) = a(ay + )" (2b)

where 7 is the number of degrees of temporal misalignment
and is set to 2 in Study 2, and a; and a, are the simulated
values of the autoregressive and cross-lagged parameters for
Y, and Y>, respectively.

In the model adjustment method, the expected values of
four parameters can be calculated using the following for-
mula (See Online Supplementary Material B for the deriv-
ation):

O, = afl (3a)
Oy, = a3, (3b)
D, =ayp (30)
Dy, = ay (3d)

where ®;; and @,, are the expected values of the autore-
gressive parameters for Y, and Y,, and ®@;, and ®,; are the
expected values of the cross-lagged parameters between Y
and Y. a;; and a,, are the simulated values of the autore-
gressive parameters for Y; and Y,, and a;, and a,; are the
simulated values of cross-lagged parameters between Y;
and Y,.

In addition, we calculated the standard error (SE) of esti-
mation as the standard deviation of the 500 parameter esti-
mates. Moreover, the statistical power of autoregressive and
cross-lagged parameters was calculated as the percentage of
significant cases over the 500 replications.

3.3. Results

3.3.1. Comparison of Naive Estimation with Model
Adjustment and Data Interpolation

Table 3 presented parameter estimation results using the
naive estimation, the model adjustment method and the
data interpolation method in the reference condition.
Similar to the result in Study 1, the naive estimation led to
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Table 3. Parameter estimation results in condition 1 (reference condition).

Solution [ o) (¢ —D)/D SE Power

Y, — Y, Naive estimation 0.18  0.099 —0.450 0.015 1.000
Model adjustment  0.09  0.098 0.089 0.015  1.000

Data interpolation 0.3 0.738 1.460 0.008  1.000

Y, — Y, Naive estimation 0.18 0.185 0.028 0.015  1.000
Model adjustment  0.09  0.098 0.089 0.015  1.000

Data interpolation 0.3 0.737 1.457 0.008  1.000

Y; — Y, Naive estimation 0.18  0.059 —0.672 0.014  0.980
Model adjustment 0.3 0.309 0.030 0.015  1.000

Data interpolation 0.3 0.096 —0.680 0.009  1.000

Y, — Y, Naive estimation 0.18 0310 0.722 0.015  1.000
Model adjustment 0.3 0.309 0.030 0.015  1.000

Data interpolation 0.3 0.095 —0.683 0.009  1.000

Notes: @ denotes the expected value of parameters. ¢ denotes the mean of
500 parameter estimates. SE denotes the standard error of parameter estima-
tion. Bold values indicate that the absolute value of the relative bias is less
than 0.100 (i.e., small relative bias).

biased results of parameter estimates, especially for the
cross-lagged effect of Y; on Y, (ie., ®1,), which was highly
underestimated. This made sense because the time interval
corresponding to this effect is the largest in the temporally
misaligned data, which led to a weak association between
the two observations, and thus, small cross-lagged effect of
Y, on Y,.

Regarding the proposed solution to the problem of tem-
poral misalignment, the model adjustment method per-
formed better. As shown in Table 3, this method yielded the
most accurate parameter estimates, with small relative devia-
tions (i.e., less than 0.050) for all four parameters. In con-
trast, the data interpolation method was not as effective as
we expected; in fact, it may be problematic. The autoregres-
sive parameters were largely overestimated, and the cross-
lagged effects were underestimated. We will discuss this
later in this paper. Additionally, it should be noted that we
only present the results obtained with mean interpolation
because the results of the two interpolation methods (i.e.,
mean interpolation and spline interpolation) were similar.
Interested readers can find the complete results using two
data interpolation methods in Online Supplementary
Material C.

3.3.2. The Effectiveness of the Model Adjustment Method
To further examine the effectiveness of the model adjust-
ment method under other conditions, we varied the sample
size and the number of time points per subject (Table 4),
parameter values (Table 5), and the continuity of timescale
(Table 6), and compared the results of the model adjust-
ment method with the naive estimation. For the data inter-
polation method, we do not present and elaborate the
results here because the results of this method in the above-
conditions (i.e., conditions 2-8) showed a similar pattern to
those in the reference condition.

As shown in Table 4, the sample size and the number of
time points per subject do not affect the accuracy of the
parameter estimates of the model adjustment method. The
relative bias of the four parameter estimates is consistently
small (i.e., <0.050) when the sample size varies from 100 to
300 and the number of time points varies from 30 to 100,
even though the standard error increases and the statistical
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Table 4. Parameter estimation of conditions testing sample size and the num-
ber of time points per subject.

Naive estimation Model adjustment

(0] ) ‘i’—;‘b SE Power @ ) # SE  Power
Condition 2 (N=100, T=50)
Y, — Y, 0.18 0.098 —0.456 0.022 0.994 0.09 0.097 0.078 0.020 0.994
Y, — Y, 0.18 0.186 0.033 0.023 1.000 0.09 0.095 0.056 0.020 0.994
Y, — Y, 0.18 0.057 —0.683 0.020 0.740 0.3 0.310 0.033 0.021 1.000
Y, — Y; 018 0309 0.717 0.022 1.000 0.3 0.308 0.027 0.022 1.000
Condition 3 (N =300, T=50)
Y; — Y; 0.18 0.099 —0.450 0.013 1.000 0.09 0.097 0.078 0.013 1.000
Y, — Y, 0.18 0.185 0.028 0.013 1.000 0.09 0.096 0.067 0.012 1.000
Y; — Y, 0.18 0.058 —0.678 0.012 0.998 0.3 0.309 0.030 0.012 1.000
Y, — Y, 0.18 0310 0.722 0.012 1.000 0.3 0.310 0.033 0.012 1.000
Condition 4 (N=200, T=30)
Y, — Y, 0.18 0.101 —0.439 0.021 0.998 0.09 0.098 0.089 0.021 0.998
Y, — Y, 0.18 0.186 0.033 0.022 1.000 0.09 0.097 0.078 0.020 0.998
Y, — Y, 0.18 0.059 —0.672 0.020 0.836 0.3 0.309 0.030 0.020 1.000
Y, — Y; 018 0310 0.722 0.020 1.000 0.3 0.308 0.027 0.019 1.000
Condition 5 (N =200, T=100)
Y; — Y; 0.18 0.099 —0.450 0.010 1.000 0.09 0.098 0.089 0.010 1.000
Y, — Y, 0.18 0.186 0.033 0.012 1.000 0.09 0.098 0.089 0.011 1.000
Y; — Y, 0.18 0.058 —0.678 0.011 1.000 0.3 0.311 0.037 0.011 1.000
Y, — Y, 0.18 0311 0.728 0.011 1.000 0.3 0.311 0.037 0.011 1.000

Notes: @ denotes the expected value of parameters. @ denotes the mean of
500 parameter estimates. SE denotes the standard error of parameter
estimation.

Table 5. Parameter estimation of conditions testing parameter values.

Naive estimation Model adjustment

© ¢ % SE Power @ ¢ ©® SE Power
Condition 6 (N =200, T=50)
Y, — ¥, 024 0.167 —0.304 0.016 1.000 0.16 0.165 0.031 0.016 1.000
Y, — Y, 0.12 0.127 —0.058 0.015 1.000 0.04 0.047 0.175 0.016 0.800
Y1 — Y, 0.12 0.058 —0.517 0.015 0.974 0.2 0.234 0.170 0.016 1.000
Y, — ¥, 024 0356 —0.483 0.013 1.000 0.4 0356 —0.110 0.013 1.000
Condition 7 (N=200, T=50)
Y, — ¥, 0.12 0.048 —0.600 0.016 0.830 0.04 0.046 0.150 0.016 0.796
Y, — Y, 024 0.236 —0.017 0.016 1.000 0.16 0.164 0.025 0.014 1.000
Y, — Y, 024 0.048 —0.800 0.015 0.892 0.4 0357 —0.108 0.014 1.000
Y, — ¥, 012 0234 0950 0015 1.000 02 0233 0.165 0.015 1.000

Notes: @ denotes the expected value of parameters. ¢ denotes the mean of
500 parameter estimates. SE denotes the standard error of parameter
estimation.

Table 6. Parameter estimation of conditions testing discontinuous timescale.

Naive estimation Model adjustment

® ¢ % SE Power @ ¢ 2% SE Power
Condition 8 (N=200, T=507)
Yi — Y 018 0098 —0456 0016 1.000 0.09 0.096 0.067 0.016 1.000
Y, — Y, 018 0.186 —0.033 0017 1.000 0.09 0.099 0.100 0.016 1.000
Yi — Y, 018 0059 —0.672 0016 0942 03 0309 0.030 0.014 1.000
Y, — Y, 018 0311 0728 0016 1.000 03 0311 0.037 0.016 1.000

Notes: @ denotes the expected value of parameters. ¢ denotes the mean of
500 parameter estimates. SE denotes the standard error of parameter estima-
tion. *With discontinuous timescale.

power of the autoregressive parameters decrease slightly
when the sample size or the number of time points
decreases. More importantly, the model adjustment method
always performed better in terms of parameter estimation
and statistical power estimation compared to the naive
estimation.

Table 5 presents the parameter estimation results when
the simulated parameter values are varied. Under these con-
ditions, the relative bias of the cross-lagged effects estimated
using the model adjustment method is relatively larger than

that in the reference condition; however, the model adjust-
ment method still shows higher accuracy of the parameter
estimation compared with the naive estimation method. In
addition, the statistical power of the cross-lagged effects in
the model adjustment method is higher than that of the
naive estimation method. Therefore, the model adjustment
method can be used to better estimate and compare the
reciprocal effects between temporally misaligned variables.
In addition, the model adjustment method was also
found to be effective in data with discontinuous timescale.
As shown in Table 6, compared to the results of naive esti-
mation, the relative bias of the parameters is smaller (i.e.,
<0.050) and the statistical power is higher when the model
adjustment method is applied. Therefore, the effectiveness
of the model adjustment method is not affected by the con-
tinuity of timescale, which indicates that the model adjust-
ment method can be used to address the problem of
temporal misalignment for both data with continuous time-
scale (e.g., daily diary data) and discontinuous timescale
(e.g., some data collected by experience sampling method).

4, Study 3: Empirical Application on Daily Diary
Data

4.1. Empirical Data

We first present an example using daily diary data with
temporally misaligned variables to show the differences of
the parameter estimation results of different methods (i.e.,
naive estimation, model adjustment, and data interpolation).
This example investigated the bidirectional relation between
negative affect during the day and mood on final wakening.
Forty-seven undergraduates participated in a two-week
study, during which they reported their negative affect
before sleep every day and assessed their mood upon awak-
ening the next morning. Negative affect was measured by
five items from the Positive and Negative Affect Scale
(PANAS; Kercher, 1992). Participants were asked to assess
the extent to which they had the following feelings: upset,
afraid, nervous, scared, and distressed on that day, from 1
(“very slight or not at all”) to 5 (“extremely”). The total
score of the five items was used to represent individuals’
negative affect during the day. Mood on final wakening was
measured by one item, which asked participants to rate their
mood on their final awakening, from 1 (“very tense”) to
(“very calm”). We tested the bidirectional relation between
these two variables by fitting them into DSEM in Mplus 8.3
(Muthén & Muthén, 2017) using the naive estimation, the
model adjustment method, and the data interpolation
method (i.e., mean interpolation).

4.2. Results

Table 7 shows the parameter estimation results using the
naive estimation and the two solutions proposed in this
study. The results of the naive estimation showed significant
autoregressive effects of negative affect during the day and
mood on final awakening. More importantly, there was a
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Table 7. Parameter estimates of the bidirectional relation between negative affect during the day and mood on final wakening obtained by different estimation
methods.

Naive estimation Model adjustment Data interpolation

B SE 95%Cl B SE 95%(Cl B SE 95%Cl
Pnn 0.267 0.054 [0.157, 0.368] 0.266 0.057 [0.146, 0.376] 0.732 0.024 [0.685, 0.778]
Pum 0.115 0.051 [0.012, 0.214] 0.102 0.052 [0.002, 0.206] 0.753 0.024 [0.703, 0.799]
Pnm 0.051 0.054 [-0.059, 0.153] —0.124 0.055 [-0.230, —0.011] -0.078 0.021 [~0.119, —0.037]
Pun -0.136 0.043 [-0.218, —0.055] —0.134 0.044 [-0.222, —0.049] ~0.001 0.025 [0.049, 0.047]

Notes: @y and @um denote the autoregressive parameters of negative affect during the day and mood on final wakening. @yxq and @uy denote the cross-

lagged parameters between negative affect during the day and mood on final wakening. Bold values indicate significant effects.

significant cross-lagged effect of mood on final awakening
on negative affect during the day, suggesting that if partici-
pants felt calmer on final awakening, they would have less
negative affect during the day. In contrast, the cross-lagged
effect of negative affect during the day on mood on final
awakening was not significant; however, this was not the
same in the results of the model adjustment method. In
fact, after adjusting the estimation model, participants’ nega-
tive affect during the day could negatively predict their
mood when they finally woke up the next morning.

Considering that negative affect during the day and
mood on final awakening were not aligned in time, the
cross-lagged effect of negative affect during the day on
mood on final awakening was actually the predicting effect
of negative affect during one day on the next measures of
the mood on final awakening next day morning (i.e., mood
on the third day), which corresponded to a much larger
time interval compared to the cross-lagged effect in the
other direction. Thus, it made sense that this cross-lagged
effect was smaller, and was less likely to be significant in the
naive estimation. In the model adjustment method, however,
the cross-lagged effect of negative affect during the day on
mood on final awakening was the predicting effect of nega-
tive affect during the day on mood on final awakening on
the second day, not the third day. Since the time interval
between these two variables was smaller and more compar-
able to the time interval in the other direction, the corre-
sponding result (i.e., the cross-lagged effects between these
two variables were significant in both directions) were more
reasonable.

In addition, the results of the data interpolation method
were largely different from those of the naive estimation
and the model adjustment method. First, in the results of
the data interpolation method, the autoregressive effects of
negative affect during the day and mood on final awakening
were much larger than those estimated by the other two
methods, and these extremely large effects were unusual,
and thus may be unreasonable to be found in empirical
studies. Moreover, the cross-lagged effects between negative
affect during the day and mood on final awakening were
relatively small or even insignificant, which also differed
from the results of the other two methods. Thus, the param-
eter estimation results of the data interpolation method
showed a similar pattern to that of the simulation study
(i.e., overestimate the autoregressive effects and underesti-
mate the cross-lagged effects), suggesting that the data inter-
polation method may be an inappropriate solution to the
problem of temporal misalignment.

5. Study 4: Empirical Application on Experience
Sampling Data

5.1. Empirical Data

Another example is a diet study that used the experience
sampling method and collected temporally misaligned data.
This study explored the bidirectional relation between
unhealthy snacking and hunger. A total of fifty-nine under-
graduates participated in this one-week study, during which
they need to finish an online questionnaire five times per
day at 11 am., 2 p.m., 5 p.m., 8 p.m. and 11 p.m. To meas-
ure unhealthy snacking behavior, we summarized six catego-
ries of unhealthy snacks, such as sugar-sweetened beverages,
based on food codes adapted to the APS (Kelly et al., 2016),
and provided participants with detailed information and
examples. In each questionnaire, participants were first
asked to report whether they had eaten any snacks since
they completed the previous questionnaire. If they had eaten
any of the snacks, they were then required to report the
number of times they had eaten each type of unhealthy
snack, from one to nine times. The total number of times
the six categories of unhealthy snacks were consumed was
calculated to represent individual’s unhealthy snacking
behavior. In addition, participants were also asked to rate
their hunger from 1 (“at this moment, not hungry at all”) to
9 (“at this moment, extremely hungry”) in each question-
naire. The bidirectional relation between unhealthy snacking
and hunger feeling was tested in DSEM in Mplus 8.3
(Muthén & Muthén, 2017) by using the naive estimation,
the model adjustment method, and the data interpolation
method (i.e., mean interpolation).

5.2. Results

Table 8 shows the parameter estimation results of the bidir-
ectional relation between unhealthy snacking and hunger
using different methods. In the results of naive estimation,
only the autoregressive effect of hunger was significant,
while other autoregressive and cross-lagged effects were not
significant. However, a significant cross-lagged effect of
unhealthy snacking on hunger was found in the results of
the model adjustment method, which suggested that
unhealthy snacking alleviated subsequent hunger. The differ-
ence in this cross-lagged effect can probably be attributed to
the smaller time interval between unhealthy snacking and
hunger in the adjusted model. In the naive estimation, the
cross-lagged effect of unhealthy snacking on hunger was the
predictive effect of unhealthy snack intake between the last
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Table 8. Parameter estimates of the bidirectional relation between unhealthy snacking and hunger obtained by different estimation methods.

Naive estimation

Model adjustment

Data interpolation

B SE 95%Cl B SE 95%Cl B SE 95%Cl
Pu 0014 0.026 [—0.042, 0.062] 0016 0.027 [—0.039, 0.065] 0.646 0015 [0.616, 0.676]
Prn -0.128 0.027 [-0.179, —0.074] -0.133 0.027 [-0.185, —0.079] 0.589 0014 [0.561, 0.615]
Pun 0.009 0.046 [~0.081, 0.096] —0.069 0.032 [~0.128, —0.007] -0.035 0017 [~0.070, —0.003]
Pru 0.010 0.033 [—0.053, 0.080] 0.010 0.031 [—0.045, 0.079] 0.037 0013 [0.011, 0.063]

Notes: @yy and @uy denote the autoregressive parameters of unhealthy snacking and hunger. @yy and @uy denote the cross-lagged parameters between

unhealthy snacking and hunger. Bold values indicate significant effects.

measurement and the current measurement on hunger at
the next measurement, whereas in the model adjustment
method, this effect was the predictive effect of unhealthy
snack intake between the last measurement and the current
measurement on hunger at that measurement, not next
measurement. Thus, the model adjustment method revealed
a significant effect of unhealthy snack intake on subsequent
hunger.

In addition, the data interpolation method showed a
similar pattern of results to the previous example. For
example, the autoregressive effects of unhealthy snacking
and hunger were much larger than those found in the other
two methods. This again suggested that interpolation of
temporally misaligned data may not be as effective as we
intuitively expected.

6. Discussion

The reciprocal effect or causality between variables is one of
the main interests of social scientists (Hecht & Zitzmann,
2021; Usami et al, 2019). From a dynamic perspective,
researchers collect intensive longitudinal data and estimate
the autoregressive and cross-lagged effects of two variables
to investigate how changes in one variable are influenced by
previous values of that variable and the other variable.
Based on this, causal inference between variables can be
made by comparing the magnitude of their cross-lagged
effects. However, this may be problematic when two varia-
bles are not aligned in time.

In this study, we performed a preliminary exploration of
the temporal misalignment problem in intensive longitu-
dinal data based on DSEM. We first found that the results
of parameter estimation were significantly affected as the
degree of temporal misalignment increased. More import-
antly, in the two proposed solutions, the model adjustment
method was shown to be effective under various simulation
conditions. Finally, we demonstrated the different results
using three different methods (i.e., naive estimation, model
adjustment, and data interpolation) in temporally misaligned
data of two empirical studies.

6.1. Consequences of Temporal Misalignment

As we expected, the bias in the estimates of the autoregres-
sive and cross-lagged effects of two temporally misaligned
variables grows as the degree of temporal misalignment
increases. Even worse, the cross-lagged effect corresponding
to the larger time interval decreases rapidly, with the statis-
tical power of this effect falling below 0.80 (i.e., the lowest

value of generally accepted statistical power) when a moder-
ate degree of temporal misalignment is reached. This sug-
gests that a moderate degree of temporal misalignment may
significantly alter the findings and conclusions of empirical
studies, and therefore it is inappropriate to blindly treat
temporally misaligned variables as aligned to estimate their
cross-lagged effects and infer their causal effects.

6.2. Solutions to Temporal Misalignment

To address the problem of temporal misalignment, we pro-
posed two possible solutions (i.e., the model adjustment
method and the data interpolation methods) and examined
the effectiveness of these two solutions by comparing their
parameter estimation results with those of the naive estima-
tion. The model adjustment method proved to be a practical
solution under a variety of conditions with different settings
(e.g., different sample sizes and number of time points per
subject). This method replaces the cross-lagged effect corre-
sponding to a larger time interval in the naive estimation
with the correlation between two variables in the same
observation that have a smaller time interval. Using this
approach, the difference in the time intervals corresponding
to two cross-lagged effects between temporal misaligned var-
iables becomes smaller, so that the two cross-lagged effects
are more comparable. Therefore, it is more convincing to
infer reciprocal or causal relations between variables.
However, it should be noted that the model adjustment
method cannot estimate contemporaneous relations between
variables. The contemporaneous relation is meaningful for
intensive longitudinal data collected through empirical sam-
pling method or ecological momentary assessment. It
reflects the extent to which two variables co-occur after
accounting for the effects of the previous time point, sug-
gesting a potential causal relation between variables that
occurs faster than the specific time interval used in a study
(Epskamp et al., 2018). However, because the model estima-
tion method only adjusts the estimated model without
changing the temporally misaligned data itself, there are no
concurrent variables in the data to estimate contemporan-
eous relations between variables. Furthermore, one should
note that the association between the residuals of two tem-
porally misaligned variables (e.g., unhealthy snacking and
hunger) estimated by the naive model does not reflect their
simultaneous association or co-occurrence. In fact, it would
be more appropriate to interpret this association as a cross-
lagged effect of an earlier-occurring variable (e.g., unhealthy
snacking) on a subsequent variable (e.g., hunger). If
researchers are truly interested in the contemporaneous



relation between variables, they may need to adjust the
measure to match the time blocks of the two variables, for
example, by asking participants to report their average feel-
ings (e.g., hunger) and performance (e.g., unhealthy snack-
ing behavior) after completing the previous questionnaire.
In this case, the simultaneous association between variables
could represent their contemporaneous relation (e.g., when-
ever the person ate an unhealthy snack, he or she felt
more/less hungry). In addition, for some temporally mis-
aligned data collected by daily diaries, the contemporaneous
relation between the variables may not be reasonable
because there is no overlap between the time blocks of the
two variables (e.g., negative affect during the day and mood
on final waking). Therefore, it is appropriate to use the
model adjusted method to estimate cross-lagged effects
between temporally misaligned daily diary data.

The other proposed solution to the problem of temporal
misalignment is data interpolation; however, it was found to
be ineffective in this study. Although only two typical inter-
polation methods for longitudinal data were used in this
study (i.e., mean interpolation and spline interpolation), the
parameter estimation results of both methods showed a
similar biased pattern of bias: overestimation of autoregres-
sive effects while underestimation of cross-lagged -effects.
This may be attributed to the fact that both methods inter-
polate the “missing” values only based on the information
of that variable without considering the influence of the
other variable. As a result, both mean interpolation and
spline interpolation produced large bias in the parameter
estimates. However, we believed that the idea of data inter-
polation is still valuable. First, temporally misaligned varia-
bles in intensive longitudinal data can be regarded as a
special form of missing data. Although the interpolation
method based only on the information of the variables
themselves (such as the mean interpolation and spline inter-
polation used in this study) introduced bias in parameter
estimation in this study, it has the potential to be an effect-
ive solution to the problem of temporal misalignment if the
information of both variables can be considered in the inter-
polation. Furthermore, if a more accurate parameter estima-
tion result can be obtained by using a suitable interpolation
method, the data interpolation method can answer questions
that the model adjustment method cannot. For example,
since the data interpolation method can interpolate tempor-
ally misaligned data to aligned data, it is possible to investi-
gate the contemporaneous relation between variables based
on their simultaneous association. Therefore, although the
interpolation methods used in this study are shown to be
inappropriate, the idea of data interpolation still has great
research prospects.

6.3. Limitations and Future Directions

This study has several limitations. First, although we found
the model adjustment method to be a practical solution to
the problem of temporal misalignment, it should be noted
that we tested its effectiveness primarily based on a moder-
ate degree of temporal misalignment, as Study 1 suggested
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that the parameters estimates and statistical power changed
substantially when the two variables are moderately mis-
aligned. In addition, this method does not allow estimating
contemporaneous relations between variables, although such
relations are meaningful between variables that may occur
simultaneously. Nevertheless, we recommend that future
researchers fit temporally misaligned data to the adjusted
model because its parameter estimation results are more
accurate than those of the naive estimation, especially in the
estimation of cross-lagged effects. Considering that examin-
ing the reciprocal effects between variables is always one of
the core objectives of research (Usami et al., 2019), adjusting
the model makes the cross-lagged effects between variables
more comparable, which is essential to obtain valid empir-
ical conclusions. But still, more research on coping strategies
for this problem is strongly recommended in the future.

For the data interpolation method, only two typical inter-
polation methods (i.e., mean interpolation and spline inter-
polation) were used to test its performance. While there are
a large number of other interpolation methods that have
not been tested, we believe that they may also produce simi-
lar results to the methods that we used, since most of these
methods are essentially the same: they only interpolate data
based on information of the current variable, without con-
sidering the influence of other variables. Considering that
temporally misaligned data can be regarded as a special type
of missing data, and data interpolation is a common strat-
egy for dealing with missingness, the idea of data interpol-
ation may be feasible, and it may be more helpful to
interpolate “missing” values of temporally misaligned data
by considering the interplay of two variables. However, how
such interpolation can be accomplished and whether such
data interpolation methods can more effectively address the
problem of temporal misalignment remain to be investigated
in the future.

In addition, we only examined the effectiveness of the
two proposed solutions in several conditions by varying the
sample size, the number of time points per subject, the par-
ameter values and the continuity of the time scale.
However, it is not clear whether other factors have an
impact on the performance of proposed solutions. For
example, missingness is a common phenomenon in inten-
sive longitudinal data, and missingness in temporally mis-
aligned data may affect the parameter estimation results of
different solutions. Since temporally misaligned data can be
considered as “missing” 50% of the data, considering the
impact of other causes of missingness would further
increases the complexity of the data and the difficulty of
model estimation, making it more challenging to clarify the
problem of temporal misalignment. Therefore, as a prelim-
inary investigation of temporal misalignment, this study
does not further explore the impact of missingness.
Nevertheless, future studies may still need to consider other
factors (including missingness) that affect the performance
of proposed solutions to draw more solid conclusions.

Finally, this study explored possible solutions to the
problem of temporal misalignment based only on DSEM, a
commonly used modeling approach in the discrete-time
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modeling framework. However, one may wonder whether
this problem can be more easily solved by continuous-time
modeling approaches. To the best of our knowledge, the
answer is probably no. Previous studies have confirmed the
effectiveness of continuous-time modeling methods in deal-
ing with the time interval dependence problem (de Haan-
Rietdijk et al, 2017). For example, ctsem (Driver et al.,
2017), a useful R package for continuous-time structural
equation modeling, allows different time intervals between
observations and each person can have his/her own specific
series of observations, which effectively solves the problem
of unequal time intervals. However, this modeling approach
does not allow different time scales between different varia-
bles, so it cannot reflect the temporal misalignment of varia-
bles, but can only treats temporally misaligned data as
aligned. Therefore, the problem of temporal misalignment
in intensive longitudinal data cannot be avoided or easily
solved in the continuous-time modeling framework.
Although there is no existing continuous-time modeling
approach that can be directly used to solve the problem of
temporal misalignment, we believe that it is intriguing but
also challenging to find possible solutions based on the con-
tinuous-time modeling framework, and this may be an
important path for future research.
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Appendix A. Mplus syntax for data simulation

TITLE: Study 1-Data simulation
MONTECARLO:

NAMES ARE Y1 Y2;

NOBS = 60000;

NREP = 500;

NCSIZES = 1;

CSIZES = 200(300);

LAGGED =Y1(1) Y2(1);

REPSAVE = ALL;

SAVE = Studyl_rep*.dat;
ANALYSIS:

TYPE =TWOLEVEL RANDOM;

ESTIMATOR = BAYES;

PROCESSORS = 2;

BITER = (1000);
MODEL POPULATION:

%WITHIN%

Y1 on Y1&1 @0.4;

Y2 on Y2&1 @0.4;

Y1 on Y2&1 @0.4;

Y2 on Y1&1 @0.4;

Y1 @0.7;

Y2 @0.7;

Y1 with Y2 @0.1;

%BETWEEN%

Y1 @Q1;

Y2 @1;

Y1 with Y2 @0.4;
MODEL:

%WITHIN%

Y1 on Y1&I;

Y2 on Y2&1;

Y1 on Y2&1;

Y2 on Y1&1;

%BETWEEN%

Y1 with Y2;

Appendix B. Mplus syntax for the Naive estimation
and the model adjustment method

TITLE: This is an example for the naive estimation of a DSEM
DATA: FILE IS temporally misaligned data.csv;
VARIABLE:

NAMES =1ID TIMESTAMP Y1 Y2;

USEVAR=Y1 Y2;

MISSING ARE ALL(999);

CLUSTER =1D;
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LAGGED =Y1(1) Y2(1); Y1 on Y1&1;
TINTERVAL = TIMESTAMP(1); Y2 on Y2&1;
ANALYSIS: Y1 on Y2&I;
TYPE =TWOLEVEL RANDOM; Y2 on Y1&1;! “Y2 on Y1&1;” for the naive estimation; “Y2 on Y1;”
ESTIMATOR = BAYES; for the model adjustment method.
PROCESSORS = 2; %BETWEEN%
BITER = (1000); Y1 with Y2;
THIN = 10; OUTPUT:
MODEL: TECH1 TECHS8 STDYX;

%WITHIN%
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